This is a ongoing research please don’t share any content on this page without prior permission from the author. (Debojit Das : [email protected])
https://github.com/Debojit-D/Dual_Arm_Manipulation-Addverb_and_IITGN_Robotics.git
https://github.com/Debojit-D/Addverb_Heal_and_Syncro_Hardware.git
Contains the MuJoCo and Gazebo simulations. Also the ROS packages for dual arm control.
Contains the Hardware ROS Packages for Addverb. Heal and Syncro Robots.
<aside> 💡

$$ \begin{equation} \boldsymbol{\tau}_{\text{desired}} = \mathbf{J}H^{T} \mathbf{F}{\text{ext}} \end{equation}
$$
$$ \begin{equation} \boldsymbol{\tau}{\text{desired}} = \mathbf{J}H^{T} (\mathbf{F}{\text{impedance}} + \mathbf{F}{\text{null space}}) \end{equation} $$
$$ \begin{equation} \mathbf{F}_{\text{impedance}} = \mathbf{G}^{+} \big[ \mathbf{K}_p (\mathbf{q}_d - \mathbf{q}) + \mathbf{K}_d (\dot{\mathbf{q}}_d - \dot{\mathbf{q}}) \big) \end{equation}
$$
$$ \begin{equation} \mathbf{F}{\text{nullspace}} = (\mathbf{I} - \mathbf{G}^{+} \mathbf{G}) \Phi{\text{o}} \end{equation}
$$
$$ \begin{equation}\boldsymbol{\tau}_{\text{desired}} = \mathbf{J}_H^{T} \bigg[ \mathbf{G}^{+} \Big( \mathbf{K} (\mathbf{q}_d - \mathbf{q}) + \mathbf{K}_d (\dot{\mathbf{q}}d - \dot{\mathbf{q}}) \Big) + (\mathbf{I} - \mathbf{G}^{+} \mathbf{G}) \Phi{\text{o}} \bigg]\end{equation} $$
In the formulation above and the once generated on this page :-
If we assume a soft contact model (assuming full G matrix),
| Matrix / Array | Dimensions |
|---|---|
| Grasp Matrix | 6 x 12 |
| Hand Jacobian | 12 x 12 |
If we assume a Coulomb Friction Point Contact Model
| Matrix / Array | Dimensions |
|---|---|
| Grasp Matrix | 6 x 6 |
| Hand Jacobian | 6 x 12 |
Appendix
Internal Forces Determination by Friction - Cone Constrained Force Distribution
Object Level Admittance Control


| --- | --- | --- |
(To be added later)